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Abstract

This work investigates the added value of ensembles constructed from seventeen
lumped hydrological models against their simple average counterparts. It is thus hy-
pothesized that there is more information provided by all the outputs of these models
than by their single aggregated predictors. For all available 1061 catchments, results5

showed that the mean continuous ranked probability score of the ensemble simulations
were better than the mean average error of the aggregated simulations, confirming the
added value of retaining all the components of the model outputs. Reliability of the
simulation ensembles is also achieved for about 30% of the catchments, as assessed
by rank histograms and reliability plots. Nonetheless this imperfection, the ensemble10

simulations were shown to have better skills than the deterministic simulations at dis-
criminating between events and non-events, as confirmed by relative operating char-
acteristic scores especially for larger streamflows. From 7 to 10 models are deemed
sufficient to construct ensembles with improved performance, based on a genetic algo-
rithm search optimizing the continuous ranked probability score. In fact, many model15

subsets were found improving the performance of the reference ensemble. This is thus
not essential to implement as much as seventeen lumped hydrological models. The
gain in performance of the optimized subsets is accompanied by some improvement
of the ensemble reliability in most cases. Nonetheless, a calibration of the predictive
distribution is still needed for many catchments.20

1 Introduction

In hydrology, traditional approaches focus on a single model thought to be the best pos-
sible for a given application. In opposition, multimodel combination aims at extracting
as much information as possible from a group of existing models. The idea is that each
model of the group provides specific information that might be combined to produce25

a better overall simulation. This concept has been widely tested because no hydrolog-
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ical model could yet be identified as the “best” model in all circumstances (Oudin et
al., 2006).

For example, Shamseldin et al. (1997) compared three combinational methods over
five rainfall-runoff models and eleven catchments. The methods were the simple model
average (SMA), the weighted average, and artificial neural networks. Results showed5

that the combined outputs were more accurate than the best single one. Later, Geor-
gakakos et al. (2004) tested a multimodel approach over six catchments. Combined
outputs were constructed with both calibrated and uncalibrated distributed model sim-
ulations, using the SMA. Results confirmed the better performance of the combined
series over individual ones; furthermore, the authors claimed that multimodel simula-10

tions should be considered as an operational tool. Ajami et al. (2006) examined yet
another method of combination, namely the multimodel superensemble of Krishna-
murti et al. (1999), using outputs from seven distributed models. They found that more
sophisticated combination techniques may further improve simulation accuracy, that at
least four models are required to obtain consistent multimodel simulations, and that15

the multimodel accuracy is related to the accuracy of the individual member models
(longer dataset and more models might then improve multimodel combination results).
Viney et al. (2009) compared predictions for one catchment exploiting ten models of
different model types, covering lumped, semi-distributed, and fully distributed models
combined in many ways. Their results differ from Ajami et al. (2006) in that the best20

ensembles are not necessarily those containing the best individual models. For the
same catchment and models as Viney et al. (2009), Bormann et al. (2007) suggested
that a number of at least 6 models are required for a multimodel ensemble to ensure
good model performance and that any number above six may not considerably improve
the performance of the ensemble.25

Another multimodel combinational method has been proposed by Oudin et al. (2006)
who resorted to two different parameterizations of the same model.

An alternative idea, which is gaining ground, combines models through optimization.
For example, Devineni et al. (2008) proposed an algorithm combining streamflow fore-
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cast from individual models based on their skill, as assessed from the rank probability
score. The methodology assigns larger weights to models leading to better predictabil-
ity under similar prediction conditions. This multimodel combination has been tested
over a single catchment, combining two statistical models. Seven multimodel com-
binations techniques were tested and results showed that developing optimal model5

combinations contingent on the predictor lead to improve predictability.
Multimodel combination has also been applied in an operational context. Loumagne

et al. (1995) combined model outputs using weights adapted to the state of the flood
forecasting system. This procedure proved to be more effective than choosing the best
model at each time step. Coulibaly et al. (2005) combined three structurally different10

hydrologic models to improve the accuracy of a daily reservoir inflow forecast based
on the weighted average method. They found that model combination can offer an
alternative to the daily operational updating of the models, providing a cost-effective
solution to operational hydrology. Marshall et al. (2007) used a hierarchical mixture
of experts (HME) allowing changes in the model structure, depending on the state of15

the catchment. The framework was tested on 10 Australian catchments, combining
results from two parameterizations of a conceptual model. Results showed that the
HME improves performance over the model taken alone.

The view shared by the above studies is the production of improved hydrological
simulations through the aggregation of a group of outputs into a single predictor. The20

present study hypothesizes that there is more value exploiting all the outputs of this
group than the single aggregated one, following the philosophy of meteorological en-
semble prediction (Schaake et al., 2007). All the members of the ensemble are then
used to fit a probability density function (the predictive distribution), useful evaluating
confidence intervals for the outputs, probability of the streamflow being above a cer-25

tain threshold value, and more. In other words, an ensemble allows appreciating the
uncertainty of the simulation. He et al. (2010) used predictions from six meteorological
agencies, for the Huai River catchment in China, to drive a hydrological model fore-
casting the July–September 2008 flood event. Their results established multimodel as

4026

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/4023/2010/hessd-7-4023-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/4023/2010/hessd-7-4023-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 4023–4058, 2010

Performance and
reliability of
ensemble

simulations

J. A. Velázquez et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

a promising tool for 10-day-ahead discharge forecasts.
The present study aims assessing the added value of ensembles constructed from

seventeen lumped hydrological models (the probabilistic simulations) against their sim-
ple average counterparts (the deterministic simulations). It resorts to 1061 French daily
streamflow time series extending over a ten-year period, in order to generalize conclu-5

sions. The probabilistic performance based on all seventeen outputs is first compared
to the deterministic one. Then the reliability of the ensembles is assessed as well as
their operational value in terms of hit rate and false alarm rate. Further ensemble per-
formance improvement is finally sought through model selection: subsets of the sev-
enteen lumped hydrological model outputs are objectively constructed using a genetic10

search algorithm optimizing the Continuous Ranked Probability Score.
The methodology is described in the next section. Results are presented in Sect. 3,

while conclusions are given in Sect. 4.

2 Methodology

Catchments and models are presented along scores and tools used to evaluate the per-15

formance and reliability of the ensembles. The genetic search algorithm is described
last.

2.1 Catchments and models

Deterministic and probabilistic streamflow simulations from seventeen hydrological
models are analyzed on 1061 French catchments. The dataset was built by Le Moine20

(2008) and used by Le Moine et al. (2007). Catchments are spread over the French
territory (Fig. 1) in order to representing a large variety of physical conditions in terms
of size, topography, geology, soil, land use, and climate, which ranges from oceanic to
Mediterranean to continental (Table 1). Catchments with important snow accumulation
are not included, avoiding the need for a snowmelt module. Temperature, precipita-25
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tion and flow data were available at a daily time step over a 10-year period extending
from 1996 to 2005. Daily streamflows come from the French database Banque Hy-
dro. Daily precipitation and temperature values over a 8-km grid originate from the
meteorological analysis system SAFRAN of Météo-France (Durand et al., 1993). Po-
tential evapotranspiration is estimated from air temperature, using the radiation-based5

formulation proposed by Oudin et al. (2005).
The first half of the time series is used for calibration, while the second half is used

for validation. All results provided herein concern the validation sub-dataset.
All seventeen hydrological models are of low to moderate complexity: the number of

parameters ranging from 4 to 13. Table 2 lists the tested model structures along with10

the number of optimized parameters and stores for their tested version. Most of these
models were used by Perrin et al. (2001) and Mathevet (2005). All model structures
were applied in a lumped mode. These models correspond to various conceptual-
izations of the rainfall-runoff transformation at the catchment scale. They all include
a soil moisture accounting procedure but with various formulations (linear or non lin-15

ear, possibly with several soil layers). The routing module includes from 1 to 5 linear
or non linear stores, and unit hydrographs or pure time delays. Some of the models
include a non conservative function (correction factors of inputs or groundwater ex-
change functions) used to adjust the water balance. All the models were applied in the
same conditions, i.e. ran at a daily time step using the same rainfall and potential evap-20

otranspiration inputs and calibrated with the same procedure. This single application
framework provides more comparable results between model structures. This is one
of the reasons why the original model structures were modified as they sometimes had
specificities that did not match this framework. Note that the objective here was not to
test the original structures but to have a variety of conceptualizations. To avoid con-25

fusion with the original model from which they are derived, only 4 letter acronyms are
used in Table 2 and identification numbers will be used in the text and figures. Model’s
structure description is available from authors.

Calibration was performed using a local search procedure, as described by Edijatno
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et al. (1999), applied in combination with a pre-screening of the parameter space as
proposed by Mathevet (2005). This pre-screening provides a likely starting point for
the search algorithm and limits the risks to be trapped in local optima. Mathevet (2005)
showed that this approach is competitive for this type of models, in terms of efficiency
and effectiveness, when compared with more sophisticated global search procedures.5

2.2 Performance and reliability

Deterministic simulations were aggregated using the simple average method (SMA).
This is the simplest procedure for combining outputs from an ensemble of individual
models (Shamseldin et al., 1997). Ensembles were constructed in different forms. First,
a simple pooling of all seventeen model outputs was considered. Then, subsets of10

the seventeen lumped hydrological model outputs were identified objectively using the
genetic search algorithm described in Sect. 2.3 and the Continuous Ranked Probability
Score as the objective function. Finally, subsets of eight models, selected according to
their deterministic performance, were tested for comparison.

2.2.1 The absolute error criteria15

The evaluation of the performance of the deterministic simulations is based on the ab-
solute error (AE), a linear scoring rule that describes the average magnitude of the er-
rors without considering their direction. The main advantage of the AE over alternative
deterministic scores is that it can be directly compared to the Continuous Ranked Prob-
ability Score – described next – of the probabilistic simulations (Gneiting and Raftery,20

2007). It thus provides a way to compare the performance of ensemble simulations
against the performance of deterministic simulations, for each individual catchment.

2.2.2 The continuous ranked probability score

Performance evaluation of the probabilistic simulations implies the verification of
a probability distribution. Therefore the simulation error cannot be estimated from25
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a routine comparison between the model output and a verifying value. The perfor-
mance depends of the correspondence between the predicted probability and the ac-
tual frequency of occurrence (Atger, 1999). The selected score is the Continuous
Ranked Probability Score (CRPS) (Matheson and Winkler, 1976), which is a proper
score widely used in atmospheric and hydrologic sciences (e.g., Gneiting et al., 2005;5

Candille and Talagrand, 2005; Weber et al., 2006; Boucher et al., 2009). The CRPS is
defined as:

CRPS(Ft,xt)=

∞∫
−∞

(Ft(x)−H{x≥xt})2dx (1)

where Ft is the cumulative predictive distribution function for the time t, x is the pre-
dicted variable (here streamflow) and xt is the corresponding observed value. The10

function H{x≥xt} is the Heaviside function which equals 1 for simulated values larger
than the observed value and 0 for simulated values lower than the observation. The
CRPS is positive and a zero value indicates a perfect simulation. An analytical solution
of Eq. (1) exists only for normal predictive distributions (Gneiting and Raftery, 2007).
However, because the normality of the predictive distribution is not always true in the15

present study, a Montecarlo approximation to Eq. (1) has been used instead (Székely
et al., 2003; Gneiting et al., 2007):

CRPS=E |X −xt |−0.5E |X −X ′| (2)

where X and X ′ are independent copies of a random variable in a vector with distribu-
tion function Ft.20

As already mentioned, an interesting property of the CRPS is that it reduces to the
AE score in the case of a deterministic simulation (Gneiting and Raftery, 2007). How-
ever, because the score obtained by a particular ensemble simulation for a certain time
has no meaning, we rather consider the average of all individual scores as a measure of
the quality of the simulation system, thus comparing mean AE (MAE) and mean CRPS25

(CRPS), which values are directly proportional to the magnitude of the observations.
4030

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/4023/2010/hessd-7-4023-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/4023/2010/hessd-7-4023-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 4023–4058, 2010

Performance and
reliability of
ensemble

simulations

J. A. Velázquez et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

We also aim to evaluate the performance gain in terms of CRPS that may bring the
optimization procedure. Based on the skill score (e.g., Wilks, 1995), the percentage of
improvement over the reference is given by:

gain(%)=
(

1− CRPS
CRPSref

)
×100 (3)

2.2.3 Reliability5

Reliability refers to the statistical consistency between simulations and observations.
For instance, a reliable 90% confidence interval calculated using the predictive distri-
bution function should contain the observed value in 9 cases out of 10 on average. On
the other hand, the potential CRPS corresponds to the best possible CRPS value that
could be obtained with the database and the particular simulation system that is used,10

if the latter was made to be perfectly reliable. Because of the complex nature of the
CRPS, other means of assessing the reliability is often used in parallel, such as the
rank histogram and the reliability diagram. Unreliable simulations can be misleading
and should be used with caution, if at all. Statistical procedures exist to calibrate unre-
liable probabilistic simulations (e.g., Raftery et al., 2005; Fortin et al., 2006; Stensrud15

and Yussouf, 2007).
The reliability of the predictive distribution can be visually assessed using the rank

histogram (Talagrand et al., 1999; Hamill, 2001). To construct it, the observed value
xt is added to the ensemble simulation. That is, if the simulation has n members, the
new set consists of n+1 values. Then, the rank associated with the observed value is20

determined. This operation is repeated for all simulations and corresponding observa-
tions in the archive. The rank histogram is obtained by constructing the histogram of
the resulting N ranks. The interpretation of the rank histogram is based on the assump-
tions that all the members of the ensemble simulation along with the observations are
independent and identically distributed; under these hypotheses, if the predictive distri-25

bution is well calibrated, then the rank histogram should be close to uniformity (equally
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distributed). An asymmetrical histogram is usually an indication of a bias in the mean
of the simulations. If the rank histogram is symmetric and “U” shaped, it may indicate
that the predictive distribution is under-dispersed. If it has an arch form, the predictive
distribution may be over dispersed.

Because it is not practical to present all 1061 rank histograms, results will be synthe-5

sised using the ratio δ metric proposed by Candille and Talagrand (2005): a numerical
indicator reflecting the squared deviation from flatness in individual rank histograms. It
is given by

δ =
∆
∆0

(4)

where:10

∆=
n+1∑
k=1

(
sk−

N
n+1

)2

(5)

and sk is the number of elements in the kth interval of the rank histogram. For a reliable
system, sk has an expectation of N/(n+1). Then, ∆0 is the ratio that would be obtained
by a perfectly reliable system:

∆0 =
Nn
n+1

(6)15

leading to a target value of δ=1. Of course, a perfectly reliable system is a theoretical
concept. In practice, a system is declared unreliable whenever its δ value is quite larger
than 1 (Candille et al., 2005). However, the exact δ threshold, above which a system
may be declared unreliable, has to be established for each investigation, notably be-
cause the δ metric is proportional to the length of the time series (the threshold value20

adopted here will be discussed later on). Some applications of the δ metric include
evaluating the degree of reliability of meteorological ensembles by comparing δ values
according to their series lengths (e.g., Jiang et al., 2009).
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The reliability diagram is another approach used to graphically represent the perfor-
mance of probability simulations of dichotomous events. A reliability diagram consists
of the plot of observed relative frequency as a function of simulation probability and the
1:1 diagonal perfect reliability line (Wilks, 1995). In the present study, ten confidence
intervals have been calculated with nominal confidence level of 5% to 95%, with an5

increment of 5% for each emitted simulation. Then, for each simulation and for each
confidence interval, it was established whether or not each confidence intervals cov-
ered the observation. This is repeated for all simulation-observation pairs and its mean
is then plotted (Boucher et al., 2009).

2.2.4 Hit over threshold criteria10

The relative operating characteristic (ROC) curve (Peterson et al., 1954; Mason, 1982)
plots the probability of detection (POD) versus the probability of false detection (POFD),
which are given by:

POD=
hits

hits+misses
(7)

POFD=
false alarms

correct negatives+ false alarms
(8)15

The four combinations of simulations (yes or no) and observations (yes or no), called
the joint distribution, are: hit (the event simulation to occur and did occur), miss (the
event simulation not to occur, but did occur), false alarm (event simulation to occur,
but did not occur) and correct negative (event simulation not to occur and did not oc-
cur) (e.g., Wilks, 1995). The area under the ROC curve characterizes the quality of20

a simulation system’s ability to correctly anticipate the occurrence or non occurrence
of the events. In constructing a ROC curve, simulations are expressed in binary as
“warnings” or “not warnings” indicating whether or not the defined event is expected to
occur. The ROC area ranges from 0 to 1, 0.5 indicating no skill and 1 being the perfect
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score. ROC measures the ability of the simulation to discriminate between two alter-
native outcomes, thus measuring resolution. It is not sensitive to bias in the simulation,
so says nothing about reliability. A biased simulation may still have good resolution
and produce a good ROC curve, which means that it may be possible to improve the
simulation through calibration. The ROC is thus a basic decision-making criterion that5

can be considered as a measure of potential usefulness (WMO, 2002).

2.3 Genetic algorithm

Genetic algorithm is a technique for optimization of problems or systems. It is inspired
from biology, more specifically by genetic codes, where solutions are typically trans-
lated into binary code string. The search of optimal solution is regulated by rules based10

on Darwin’s theory on the survival of the fittest, by which the strings are allowed to sur-
vive from one generation (i.e. iteration) to another and to trade part of their genetic
material with other strings depending of their robustness as defined by the objective
function (e.g., Anctil et al., 2006).

The present work uses genetic algorithm to identify model subsets optimizing the15

Continuous Ranked Probability Score. The rules of reproduction, crossover and muta-
tion employed here are well described in Goldberg (1989).

The coded string consists of seventeen elements or positions, each one represent-
ing a specific model: 0 values identify models that are not used, while 1 values identify
models that are retained. A total of 131 054 combinations of at least two models can20

be generated from a pool of seventeen candidates. The processes of reproduction,
crossover and mutations regulate the search in the domain of all these possible combi-
nations, where the objective function is the inverse squared CRPS. At each generation,
50 combinations are thus investigated. From the initial generation, 20 others are cre-
ated, leading to the consideration of 1000 model subsets. This search is repeated over25

all 1061 catchments.
As already mentioned, the first half of the time series is used for optimization, while

the second half is used for validation. All results provided herein concern strictly the
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validation sub-dataset.

3 Results

3.1 Individual model performance

MAE values are used to compare individual model performance, based on their fre-
quency of occurrence in the top 5 ranking for each catchment (Fig. 2). There are clear5

differences between models. Some of them are more frequently in the top five, such
as models 1, 2, and 3, while others are rarely present, such as model 17 and 16 – note
that Fig. 2 justify the model ordering in Table 2. The selected seventeen models thus
offer a wide range of individual performance.

3.2 Comparison of deterministic and probabilistic simulations10

The main scope of the present study is to answer the following question: is there
more valuable information in the ensemble simulations than in the deterministic ones?
This question is first tackled by comparing the CRPS and the MAE values for the C0
reference ensemble formed by all seventeen models. In Fig. 3, all 1061 catchments
lead to a CRPS value lower than the MAE ones, confirming the added value of retaining15

all the components of the ensembles over their average deterministic values. Note that
simulations for each catchment have been standardized by their corresponding mean
streamflow observation to facilitate comparison between them.

However, it remains possible that some individual models surpass in performance
the C0 reference ensemble. Indeed such situations occur quite frequently when rely-20

ing on deterministic simulations, which provides the lowest MAE for only 38% of the
catchments; while for example model 1 surpasses the performance of all the other
models including the deterministic simulation in 21% of the catchments (Fig. 4a). The
performance gain following the usage of the SMA aggregating multiple model outputs
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is thus not as universal as proposed by Shamseldin et al. (1997) or Georgakakos et
al. (2004). However, the situation gets considerably better when using the probabilistic
ensemble simulations (i.e. keeping all individuals model outputs), which improve on the
performance of all individual models in 96% of the catchments (Fig. 4b). These striking
results confirm the superiority of the probabilistic approach over the deterministic one.5

The next question concerns the reliability of the ensemble simulations, as assessed
by the rank histograms and the reliability plots. Figure 5 presents some examples of
rank histograms in order to interpret their corresponding ratio δ values. As mentioned
earlier, a threshold δ value has to be established for each experimental set-up because
this metric is proportional to the length of the time series. From Fig. 5, it is assessed10

that, for the simulation system and series length at hand, a ratio δ value of about
20 may be used as a practical upper limit of reliability (Fig. 5c), while value of about
100 is without a doubt under-dispersed (Fig. 5f) – as confirmed by the corresponding
reliability diagrams drawn in Fig. 6. Now turning to the entire database, the cumulative
frequency of the ratio δ in Fig. 7 shows that reliability is achieved for about one third of15

the catchments (δ values below 20) and that the system is clearly unreliable for at least
20% of the catchments (δ values larger than 100), the other cases being debatable.
An operating simulation system based on the C0 reference ensembles would thus
need to include the calibration of the predictive distribution for an important number of
catchments, in order to improve their reliability.20

Nonetheless the reliability imperfection of our simulation system, its ability to discrim-
inating between events and non-events is next confronted to the same ability of the
deterministic simulations. For that purpose, ROC scores were calculated for threshold
values respectively corresponding to quantiles 10, 25, 50, 75 and 90 of the observation
time series. Results are gathered in Fig. 8, where it can be noted that the probabilis-25

tic ROC scores are in almost all instances superior to the deterministic ones, proving
again the superiority of the ensemble philosophy over the aggregation philosophy, at
least for better event detections, even if the produced ensemble could in many cases
be further improved by the application of a calibration procedure. It is also noteworthy
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that the predictive distributions are skilled for the large majority of the catchments (ROC
values superior to 0.5) and that the system is better at detecting larger events such as
quantiles 50 or higher, than low flow events such as quantile 10. For the latter case,
the probabilistic simulations largely improve over the deterministic ones that prove to
be unskilled for many catchments.5

3.3 Looking for optimized model ensembles

Could the system performance be further improved through model selection? A genetic
search algorithm is used to answer that question, objectively optimizing the CRPS
value for each catchment. Such analysis will also help answer some other subsidiary
questions like: Are seventeen models enough or too many to produce an operational10

ensemble? Are all models equally useful to the ensemble subsets or only the ones that
performs better individually? Does any gain in performance through optimization come
with the cost of a loss of reliability?

The optimization procedure described in Sect. 2.3 was applied to all catchments.
Many model subsets showed improved performance over the C0 reference ensemble.15

More specifically, improvements were found for 1057 of the 1061 catchments, which
represent 99.6% of the database. The gain in terms of CRPS resulting from the per-
formed optimization is shown in Fig. 9 (see Eq. 3 where the reference value is C0).
The gain varies from 0.3% to 93% with a median value of 5.5%. There is also a gain
in the quality of the ensemble’s reliability as seen in Fig. 10 that draws the initial ratio20

δ values against the ones of the optimized subsets: an improvement was obtained in
86% of the cases. However, those gains are not large enough to solve the under dis-
persion issue of the produced ensembles. A calibration procedure is thus still needed
for most catchments.

Figure 11a shows the relative frequency of selection of the models in the best sub-25

set ensemble of each catchment. When compared to Fig. 2, which showed the fre-
quency of occurrence in the top five ranking, it may be deduced that all models are

4037

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/4023/2010/hessd-7-4023-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/4023/2010/hessd-7-4023-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 4023–4058, 2010

Performance and
reliability of
ensemble

simulations

J. A. Velázquez et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

useful contributors to subset ensembles that outperform the C0 reference ensemble.
Nonetheless, the optimization procedure does somehow favour models that lead to the
best individual performance, namely 1, 2, 3, 4 and 5, then 7, 8 and 9. Furthermore,
no links could be established between the level of complexity of the models (number of
optimized parameters and storages) and their usefulness to optimized subset.5

Figure 11b presents the relative frequency of the number of models in these subsets
over all catchments. From 7 to 10 models are deemed sufficient to construct ensembles
with improved performance.

Figure 12 provides yet another view of the optimized subsets, where they are cat-
egorized by number of models, which varies from 2 to 16. Boxplots were produced10

in order to illustrate the variability of the 1061 CRPS values (standardized with their
corresponding mean streamflow observation as in Fig. 3). In general, results show that
there exist many subset sizes that improve on the C0 reference performance obtained
by pooling all seventeen lumped model outputs (the median for the best optimized
combination is 0.1850 and the median for C0 is 0.1976). Furthermore, these subsets15

are superior to the ones constructed with the best eight individual models (C1 with
a median of 0.1965) and with the worst 8 individual models (C2 with a median value of
0.2240). This latter result supports the finding of Viney et al. (2009) that the best en-
sembles are not necessarily those containing the best individual models, but it seems
that the inclusion of some good models is essential.20

4 Conclusions

The main scope of this work was to compare the added value of ensembles constructed
from seventeen lumped hydrological models against their simple average counterparts.
Ensembles are probabilistic simulations that allow appreciating the uncertainty accord-
ing to the spread of their predictive distribution at each time step. For example, they25

may be used to evaluate confidence intervals for the outputs or probabilities of the
streamflow being above a certain threshold value. Conversely, the simple average of
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the seventeen lumped outputs leads to a single aggregated predictor, which provides
no specific information about its uncertainty.

For all 1061 catchments, results showed that the CRPS of the ensembles were lower
than the MAE of the aggregated simulations, confirming the added value of retaining all
the components of the ensembles over their aggregated deterministic values. Further-5

more, the probabilistic simulations surpass the performance of all individual models in
96% of the catchments, while the same occur for only 38% of the catchments in the
case of the aggregated deterministic simulations.

Reliability of the simulation ensembles is achieved for about 30% of the catchments.
An operating simulation system would thus need to include a calibration of the pre-10

dictive distributions in order to improve their reliability. In spite this imperfection, the
ensembles were shown to be skilled at discriminating between events and non-events,
based on the ROC scores, especially for larger streamflows. Again, the comparison be-
tween probabilistic and deterministic skills was favorable to the probabilistic approach.

Genetic algorithm was next used to identify model subsets optimizing the CRPS.15

Many model subsets were found improving the performance of the reference ensem-
ble. In most cases, from 7 to 10 models selected among the 17 available models
were deemed sufficient to construct ensembles with improved performance. However,
even if an important disparity was noticed between the individual performances of the
available models, all of them appeared in the many optimized subsets. Furthermore,20

the optimized subsets were found superior to the ones constructed with the best eight
individual models, which means that the best ensembles are not necessarily those con-
taining the best individual models. The gain in performance of the optimized subsets
is accompanied by an improvement of the ensemble reliability in 86% of the cases.
Nonetheless, a calibration procedure is still needed for many catchments.25

More sophisticated aggregation methods may also have been tested, as discussed in
the introduction. They may have improved the performance (MAE) of our deterministic
simulations, as suggested by the results of previous studies. However, it is also true
that the calibration of the predictive distribution should also improve the performance
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(CRPS) of the probabilistic simulation.
All in all, this work advocates the increased usage of multiple hydrological models

for performance improvement and for uncertainty assessment. However, more work
is needed concerning model selection and the sought after diversity that brings the
essence of model ensembles: reliability. Future work should also investigate multiple5

model probabilistic forecasting in an operational context.
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University, Paris, France, 324 pp., 2008.
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Table 1. Characteristics of the 1061 catchment dataset.

Area (km2) Mean annual Mean annual potential Mean annual
rainfall (mm) evapotranspiration (mm) discharge (mm)

Minimum 10 662 339 31
Median 163 980 657 352
Maximum 32 400 2182 870 3493
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Table 2. Models identification and characteristics.

ID Model Number of Number of Derived from
optimized parameters storages

1 GR4J 4 2 Perrin et al. (2003)
2 PDM0 8 4 Moore et al. (1981)
3 MORD 6 4 Garçon (1999)
4 TOPM 8 3 Michel et al. (2003)
5 SACR 13 6 Burnash et al. (1973)
6 SMAR 9 3 O’Connell et al. (1981)
7 NAM0 10 7 Nielsen et al. (1973)
8 TANK 10 5 Sugawara (1979)
9 HBV0 9 3 Bergström et al. (1973)

10 CREC 8 3 Cormary et al. (1973)
11 WAGE 8 4 Warmerdam et al. (1997)
12 IHAC 6 3 Jakeman et al. (1990)
13 GARD 7 3 Thiery (1982)
14 SIMH 8 3 Chiew et al. (2002)
15 MOHY 7 2 Fortin et al. (2006)
16 CEQU 9 3 Girard et al. (1972)
17 HYM0 6 5 Yadav et al. (2007)

4046

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/7/4023/2010/hessd-7-4023-2010-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/7/4023/2010/hessd-7-4023-2010-discussion.html
http://creativecommons.org/licenses/by/3.0/


HESSD
7, 4023–4058, 2010

Performance and
reliability of
ensemble

simulations

J. A. Velázquez et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

26 

 

Figure 1 

 

 

 

  

Fig. 1. Location of the 1061 gauging stations and corresponding catchment boundaries (Le
Moine, 2008).
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Figure 2
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Fig. 2. Relative frequency of occurrence in the top 5 ranking, based on individual MAE values
for all catchments.
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Figure 3 

 
  

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Catchment number

M
A

E
, 

m
e
a
n
 C

R
P

S

 

 

MAE

mean CRPS

1051 1061

1 

10

20

Catchment number

M
A

E
, 
m

e
a
n
 C

R
P

S

Fig. 3. Mean probabilistic and deterministic scores comparison. Catchments are ordered
according to their MAE value.
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Figure 4 
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b) 

Fig. 4. Relative frequency of occurrence as the best model or ensemble: (a) deterministic
(MAE) and (b) probabilistic (CRPS).
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Figure 5 
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Fig. 5. Six examples of rank histograms with their ratio δ values.
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Fig. 6. Reliability plots for the same catchments as in Fig. 5.
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Figure 7 
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Fig. 7. Cumulative frequency of ratio δ for the C0 reference ensembles.
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Figure 8 

 
  

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Deterministic

P
ro

b
a
b
ili

s
ti
c

a) Quantile 10

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Deterministic

P
ro

b
a
b
ili

s
ti
c

b) Quantile 25

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Deterministic

P
ro

b
a
b
ili

s
ti
c

c) Quantile 50

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Deterministic

P
ro

b
a
b
ili

s
ti
c

d) Quantile 75

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Deterministic

P
ro

b
a
b
ili

s
ti
c

e) Quantile 90

Fig. 8. Probabilistic and deterministic ROC scores for quantiles 10, 25, 50, 75 and 90.
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Figure 9 
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Fig. 9. Cumulative frequency of the CRPS gain after optimization.
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Figure 10 
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Fig. 10. Scatter plot ratio δ values without (C0) and with optimization.
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Figure 11 
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b)  

Fig. 11. Relative frequency of (a) the presence of each model in the optimized subset, and (b)
the number of models in these subsets, for all 1061 catchments.
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Figure 12 
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Fig. 12. Box plot of the CRPS over the 1061 catchments, as a function of the number of models
per optimized subsets.
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